The computer program listed below seeks to solve Example 11 of Ryoo and Sahinidis [23, p. 564].
Line 263 through line 328 partly describe the problem.
Line 263 and line 265 show two dominoes. When X(3) is optimal, X(1) is optimal; see line 263 and line 265.
0 REM DEFDBL A-Z
1 REM DEFINT A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J44(2002),J(99),AA(99),HR(32),HHR(32),LHS(44),PLHS(44),LB(22),UB(22)
4 REM DIM PE(35,35)
5 REM DIM SD(35,35)
76 LB(1)=0:LB(2)=0:LB(3)=100
78 UB(1)=34:UB(2)=17:UB(3)=300
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-7E+30
101 A(1)=LB(1)+(RND*34)
102 A(2)=LB(2)+(RND*17)
103 A(3)=LB(3)+(RND*200)
126 IMAR=10+FIX(RND*1500)
128 FOR I=1 TO IMAR
129 FOR KKQQ=1 TO 3
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
153 B=1+FIX(RND*3)
156 IF RND<.25 THEN X(B)=CINT(A(B))-FIX(1+RND*3) ELSE IF RND<.33 THEN X(B)=CINT(A(B))+FIX(1+RND*3) ELSE X(B)=A(B)+(1-RND*2)*(RND^(RND*7) )*A(B)
157 REM IF RND<.25 THEN X(B)=CINT(A(B))-FIX(1+RND*3) ELSE IF RND<.33 THEN X(B)=CINT(A(B))+FIX(1+RND*3) ELSE X(B)=A(B)+(1-RND*2)*(RND^(RND*7) )*(A(B)+.01)
158 REM IF RND<.5 THEN X(B)=CINT(A(B))-FIX(1+RND*3) ELSE X(B)=CINT(A(B))+FIX(1+RND*3)
263 X(3)= ( -600*X(2)+15000) / 50
265 X(1)= ( -5000+50*X(3) )/( 600-X(3) )
281 FOR J78=1 TO 3
282 IF X(J78)<LB(J78) THEN 1670
283 NEXT J78
285 IF X(1)>34 THEN 1670
287 IF X(2)>17 THEN 1670
289 IF X(3)>300 THEN 1670
328 PDU=-35* X(1)^.6-35*X(2)^.6
466 P=PDU
1111 IF P<=M THEN 1670
1452 M=P
1454 FOR KLX=1 TO 3
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1557 GOTO 128
1670 NEXT I
1889 REM IF M<3 THEN 1999
1904 PRINT A(1),A(2),A(3),M,JJJJ
1906 REM PRINT A(6),M,JJJJ
1999 NEXT JJJJ
This BASIC computer program was run via basica/D of Microsoft's GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-31998 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.
2.343751E-05 16.66665 100.0002 -189.3699
-32000
0 16.66667 100 -189.3116 -31999
0 16.66667 100 -189.3116 -31998
On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time from JJJJ=-32000 through JJJJ=-31998 was two seconds.
References
[1] Andre R. S. Amaral (2006), On the Exact Solution of a Facility Layout Problem. European Journal of Operational Research 173 (2006), pp. 508-518.
[2] Andre R. S. Amaral (2008), An Exact Approach to the One-Dimensional Facility Layout Problem. Operations Research, Vol. 56, No. 4 (July-August, 2008), pp. 1026-1033.
[3] Andre R. S. Amaral (2011), Optimal Solutions for the Double Row Layout Problem. Optimization Letters, DOI 10.1007/s11590-011-0426-8, published on line 30 November 2011, Springer-Verlag 2011.
[4] Andre R. S. Amaral (2012), The Corridor Allocation Problem. Computers and Operations Research 39 (2012), pp. 3325-3330.
[5] Miguel F. Anjos, Anthony Vannelli, Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Computing, Vol. 20, No. 4, Fall 2008, pp. 611-617.
[6] Miguel F. Anjos (2012), FLPLIB--Facility Layout Database. Retrieved on September 25 2012 from www.gerad.ca/files/Sites/Anjos/indexFR.html
[7] David L. Applegate, Robert E. Bixby, Vasek Chvatal, William J. Cook, The Traveling Salesman Problem: A Computational Study. Princeton and Oxford: Princeton University Press, 2006.
[8] Jerome Bracken, Garth P. McCormick, Selected Applications of Nonlinear Programming. New York: John Wiley and Sons, Inc., 1968.
[9] R. C. Carlson and G. L. Nemhauser, Scheduling To Minimize Interaction Cost. Operations Research, Vol. 14, No. 1 (Jan. - Feb., 1966), pp. 52-58.
[10] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.
[11] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.
[12] G. Dantzig, R. Fulkerson, S. Johnson, Solution of a Large-Scale Traveling-Salesman Problem.
Operations Research, Vol. 2, No. 4 (Nov., 1954), pp. 393-410.
[13] Diptesh Ghosh, Ravi Kothari, Population Heuristics for the Corridor Allocation Problem, W.P. No. 2012-09-02, September 2012. Retrieved on September 14 2012 from Google search.
[14] David M. Himmelblau, Applied Nonlinear Programming. New York: McGraw-Hill Book Company, 1972.
[15] Willi Hock, Klaus Schittkowski, Test Examples for Nonlinear Programming Codes. Berlin: Springer-Verlag, 1981.
[16] Philipp Hungerlaender, Miguel F. Anjos (January 2012), A Semidefinite Optimization Approach to Free-Space Multi-Row Facility Layout. Les Cahiers du GERAD. Retrieved from www.gerad.ca/fichiers/cahiers/G-2012-03.pdf
[17] Philipp Hungerlaender (April 2012), Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout. Retrieved from www.optimization-online.org./DB_HTML/2012/04/3432.html
[18] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey--Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.
[19] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.
[20] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.
[21] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.
[22] C. E. Nugent, T. E. Vollmann, J. Ruml (1968), An Experimental Comparison of Techniques for the Assignment of Facilities to Locations. Operations Research 16 (1968), pp. 150-173.
[23] H. S. Ryoo, N. V. Sahinidis, Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.
[24] Donald M. Simmons (1969), One-Dimensional Space Allocation: An Ordering Algorithm. Operations Research, Vol. 17, No. 5 (Sep. - Oct., 1969), pp. 812-826.
[25] G. Stephanopoulos, A. W. Westerberg, The Use of Hestenes' Method of Multipliers to Resolve
Dual Gaps in Engineering System Optimization. Journal of Optimization Theory and Applications, Vol.15, No. 3, pp. 285-309, 1975.
[26] Jsun Yui Wong (2009, July 18). An Integer Programming Computer Program Applied to One-Dimensional Space Allocation. Retrieved from http://wongsllllblog.blogspot.com/2009/07/
[27] Jsun Yui Wong (2009, December 18). A Heuristic Nonlinear Integer Solver Applied to a Problem of Assignment of Facilities to Locations. Retrieved from http://wongsnewnewblog.blogspot.ca/2009/12/
[28] Jsun Yui Wong (2012, April 24). The Domino Method of General Integer Nonlinear Programming Applied to Problem 10 of Lawler and Bell. Retrieved from http://computationalresultsfromcomputerprograms.wordpress.com/2012/4/24/
[29] Jsun Yui Wong (2012, September 27). A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Linear Ordering Problem with 22 Facilities. Retrieved from http://computationalresultsfromcomputerprograms.wordpress.com/2012/9/27/