The following computer program seeks to solve the Powell problem taken from Mayne and Maratos [30].
While line 128 of the earlier edition is 128 FOR I=1 TO 3000, here line 128 is 128 FOR I=1 TO 2000.
0 REM DEFDBL A-Z
1 DEFINT I,J,K
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99),AA(99),HR(32),HHR(32),LHS(44),PLHS(44),LB(22),UB(22),PX(44),J44(44), PN(22),NN(22)
4 REM DIM PE(35,35)
5 REM DIM SD(35,35)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 5
112 A(J44)=-5+RND*10
113 NEXT J44
126 REM IMAR=10+FIX(RND*4000)
128 FOR I=1 TO 2000
129 FOR KKQQ=1 TO 5
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*5)
160 R=(1-RND*2)*A(B)
164 X(B)=A(B)+(RND^3*R)
178 NEXT IPP
180 IF (-1-X(1)^3) <.0000001 THEN 1670
181 X(2)=(-1-X(1)^3) ^.333333333#
183 X(3)=( 5* X(4)*X(5) )/X(2)
187 N(6)= - X(1)^2 -X(2)^2 -X(3)^2 -X(4)^2 -X(5)^2 +10
318 FOR J44= 6 TO 6
319 IF ABS(N(J44)) >0 THEN PN(J44)=-1000000!*ABS(N(J44)) ELSE PN(J44)=0
320 NEXT J44
321 IF (X(1)*X(2)*X(3)*X(4)* X(5) ) >80 THEN 1670
322 PDA=- EXP(X(1)*X(2)*X(3)*X(4)* X(5) )
333 PD1= PDA +PN(6)
335 PDU=+PD1
466 P=PDU
1111 IF P<=M THEN 1670
1452 M=P
1454 FOR KLX=1 TO 5
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1512 NN(6)=N(6)
1557 GOTO 128
1670 NEXT I
1889 IF M<-.0541 THEN 1999
1904 PRINT A(1),A(2),A(3)
1905 PRINT A(4),A(5),NN(6)
1906 PRINT M,JJJJ
1999 NEXT JJJJ
This BASIC computer program was run via basica/D of Microsoft's GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-20645 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.
-1.72156 1.600821 1.818947
.7543155 .7720398 0
-5.397187E-02 -29683
-1.726046 1.606006 -1.810611
-.7588464 .7663875 0
-5.399023E-02 -28373
-1.708848 1.586092 -1.842087
-.7881126 .7414473 0
-5.406881E-02 -23852
-1.715382 1.59367 -1.830507
-.7669632 .7607204 0
-5.395286E-02 -20645
On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-20645 was 24 minutes.
Acknowledgment
I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.
References
[1] Egon Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables. Operations Research, Vol. 13, 517-546 (1965).
[2] Egon Balas, Discrete Programming by the Filter Method. Operations Research, Vol. 15, No. 5 (Sep. - Oct., 1967), pp. 915-957.
[3] J. Bracken, G. P. McCormick, Selected Applications of Nonlinear Programming. New York: John Wiley and Sons, 1968.
[4] Richard L. Burden, J. Douglas Faires, Numerical Analysis, Ninth Edition. Brooks/Cole 2011.
[5] M. F. Cardoso, R. L. Salcedo, S. Feyo de Azevedo, D. Barbosa (1997), A Simulated Annealing Approach to the Solution of MINLP Problems. Computers and Chemical Engineering, 21 (12) pp.1349-1364.
[6] S. H. Chew, Q. Zheng, Integral Global Optimization. Volume 298 of Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, 1988.
[7] William Conley, Computer Optimization Techniques. New York/Princeton: Petrocelli Books, Inc., 1980.
[8] William Conley, Optimization: A Simplified Approach. New York/Princeton: Petrocelli Books, Inc., 1981.
[9] William Conley (1982), An Economic Order Quantity Problem. International Journal of Mathematical Education in Science and Technology, Vol. 13, No. 3, pp. 265-268.
[10] William Conley, Computer Optimization Techniques, Revised Edition. New York/Princeton: Petrocelli Books, Inc., 1984.
[11] G. Dantzig, R. Fulkerson, S. Johnson, Solution of a Large-Scale Traveling Salesman Problem. Operations Research, Vol. 2, No. 4 (Nov., 1954), pp. 393-410.
[12] George B. Dantzig, Discrete-Variable Extremum Problems. Operations Research, Vol. 5, No. 2 (Apr., 1957), pp. 266-277.
[13] R. J. Duffin, E. L. Peterson, C. Zener, Geometric Programming Theory and Applications. John Wiley and Sons, 1967.
[14] C. A. Floudas, P. M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms. Springer-Verlag, 1990.
[15] Christodoulos A. Floudas, Nonlinear and Mixed-Integer Optimization. Oxford University Press, 1995.
[16] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.
[17] R. S. Garfinkel, G. L. Nemhauser, Integer Programming. John Wiley, Inc. 1972.
[18] Amos Gilat and Vish Subramaniam, Numerical Methods for Engineers and Scientists: An Introduction with Applications Using MATLAB. John Wiley and Sons, Inc. 2008.
[19] Donald Greenspan, Vincenzo Casulli, Numerical Analysis for Applied Mathematics, Science, and Enginerring. Addison-Wesley Publishing Company, 1988.
[20] Peter L. Hammer, Sergiu Rudeanu, Boolean Methods in Operations Research and Related Areas. New York: Springer-Verlag, 1968.
[21] Peter L. Hammer, Sergiu Rudeanu, Psudo-Boolean Programming. Operations Research, March/April 1969 Vol. 17 No. 2, pp. 233-261.
[22] Willi Hock, Klaus Schittkowski, Test Examples for Nonlinear Programming Codes. Springer-Verlag 1981.
[23] Michael Junger, Thomas M. Liebling, Dennis Naddef, George L. Nemhauser, William R. Pulleybank, Gerhart Reinelt, Giovanni Rinaldi, Lawrence A. Wolsey--Editors, 50 Years of Integer Programming 1958-2008. Berlin: Springer, 2010.
[24] Ali Husseinzadeh Kashan (2011), An Efficient Algorithm for Constrained Global Optimization and Application to Mechanical Engineering Design: League Championship Algorithm (LCA). Computer-Aided Design 43 (2011) 1769-1792.
[25] G. R. Kocis, I. E. Grossmann, Global Optimization of Nonconvex Mixed-Integer Nonlinear Programming Problems in Process Synthesis. Ind. Eng. Chem. Res., Vol. 27, No. 8, 1988, pages 1407-1421.
[26] G. R. Kocis, I. E. Grossmann, A Modelling amd Decomposition Strategy for MINLP Optimization. Computers and Chemical Engineering, Vol. 13, No. 7, July 1989, pages 797-819.
[27] A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems. Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-520.
[28] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov.-Dec., 1966), pp. 1098-1112.
[29] Duan Li, Xiaoling Sun, Nonlinear Integer Programming. Springer, 2006.
[30] D. Q. Mayne, N. Maratos (1979), A First Order, Exact Penalty Function Algorithm for Equallity Constrained Optimization Problems. Mathematical Programming 16 (1979) 303-324.
[31] Harry M. Markowitz and Alan S. Mann. On the Solution of Discrete Programming Problems. Econometrica, Vol. 25, No. 1 (Jan., 1957) pp. 84-110.
[32] Keith Meintjes and Alexander P. Morgan, Chemical Equilibrium Systems as Numerical Test Problems. ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990, Pages 143-151.
[33] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.
[34] C. Mohan, H. T. Nguyen (1999), A Controlled Random Search Technique Incorporating the Simulated Annealing Concept for Solving Integer and Mixed Integer Global Optimization Problems.
Computational Optimization and Applications, July 1999, Vol. 14 Issue 1, pp.103-132.
[35] Ramon E. Moore, R. Baker Kearfott, Michael J. Cloud, An Introduction to Interval Analysis. Cambridge University Press, 2009.
[36] Chi-Kong Ng, Lian-Sheng Zhang, Duan Li, Wei-Wen Tian (2005), Discrete Filled Function Method for Discrete Optimization. Computational Optimization and Applications, 31, pp. 87-115, 2005.
[37] Panos Y. Papalambros, Douglass J. Wilde, Principles of Optimal Design: Modeling and Computation, Second Edition. Cambridge University Press, 2000.
[38] D. R. Plane, C. McMillan, Discrete Optimization. Englewood Cliffs: Prentice-Hall, 1971.
[39] John R. Rice, Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.
[40] H. S. Ryoo, N. V. Sahinidis (1995), Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers and Chemical Engineering, Vol. 19, No. 5, pp. 551-566, 1995.
[41] Terry Shoup, A Practical Guide to Computer Methods for Engineers. Englewood Cliffs: Prentice-Hall, 1979.
[42] M. Syslo, N. Deo, J. Kowalik, Discrete Optimization Algorithms with Pascal Programs. Englewood Cliffs: Prentice-Hall, 1983.
[43] C. A. Trauth, R. E. Woolsey (1969), Integer Linear Programming: A Study in Computational Efficiency. Management Science, Volume 15, 1969, 481-493.
[44] Jsun Yui Wong (2009, July 18). An Integer Programming Computer Program Applied to One-Dimensional Space Allocation. Retrieved from http://wongsllllblog.blogspot.com/2009/07
[45] Jsun Yui Wong (2009, December 18). A Heuristic Nonlinear Integer Solver Applied to a Problem of Assignment of Facilities to Locations. Retrieved from http://wongsnewnewblog.blogspot.ca/2009/12
[46] Jsun Yui Wong (2011, May 5). The Domino Method Applied to Solving a Nonlinear System of Five Equations, Third Edition. Retrieved from http://computationalresultsfromcomputerprograms.wordpress.com/2011/05/05
[47] Jsun Yui Wong (2011, May 15). The Domino Method Applied to Solving a Nonlinear System of Ten Equations of a Model of Propane-in-Air Combustion, Fourth Edition. Retrieved from http://computationalresultsfromcomputerprograms.wordpress.com/2011/05/15
[48] Jsun Yui Wong (2012, February 26). The Domino Method of Nonlinear Discrete Programming Applied to a Small Problem from the Literature. Retrieved from http://myblogsubstance.typepad.com/substance/2012/02
[49] Jsun Yui Wong (2011, November 20). A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to the Air Transport Model of Markowitz and Manne, Fifth Edition Revisited. Retrieved from http://myblogsubstance.typepad.com/substance/2011/11
[50] Jsun Yui Wong (2012, April 21). The Domino Method of General Integer Nonlinear Programming Applied to a Five-Step Cantilever Beam Design. Retrieved from http://computationalresultsfromcomputerprograms.wordpress.com/2012/04/21/
[51] Jsun Yui Wong (2012, April 24). The Domino Method of General Integer Nonlinear Programming Applied to Problem 10 of Lawler and Bell. Retrieved from http://computationalresultsfromcomputerprograms.wordpress.com/2012/4/24
[52] Jsun Yui Wong (2013, January 14). The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Programming Problem with Integer Variables and Continuous Variables, Revised Edition. Retrieved from http://myblogsubstance.typepad.com/substance/2013/01
[53] Jsun Yui Wong (2013, January 24). The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Programming Problem with Eight 0-1 Variables and Nine Continuous Variables. Retrieved from http://computationalresultsfromcomputerprograms.wordpress.com/2013/01/24
[54] Liexiang Yan, Kun Shen, Shenghua Hu (2004), Solving Mixed Integer Nonlinear Programming Problems with Line-Up Competition Algorithm. Computers and Chemical Engineering, Volume 28, Issue 12, pages 2647-2657.