Jsun Yui Wong
The following computer program seeks to solve the nonlinear system of equations on page 25 of Remani [12, page 25],
https://www.lakeheadu.ca/sites/default/files/updates/77/docs/RemaniFinal.pdf. This system comes from
the boundary value problem of nonlinear ordinary differential equation on page 23 of Remani [12, page 23] and on page 710 of Burden and Faires [1, page 710]. The present problem has 19 nonlinear equations with 19 unknowns.
Whereas line 94 of the third edition is 94 A(KK) = 0 + RND * 50, here line 94 is 94 A(KK) = -50 + RND * 100.
0 DEFDBL A-Z
3 DEFINT J, K
4 DIM X(32768), A(32768), L(32768), K(32768), C(22), P(22)
5 FOR JJJJ = -32000 TO 32000
14 RANDOMIZE JJJJ
16 M = -1D+50
31 C(1) = .432: C(2) = .5495: C(3) = .686: C(4) = .84375: C(5) = 1.024: C(6) = 1.22825: C(7) = 1.458: C(8) = 1.71475: C(9) = 2
35 C(10) = 2.31525: C(11) = 2.662: C(12) = 3.04175: C(13) = 3.456: C(14) = 3.90625: C(15) = 4.394: C(16) = 4.92075: C(17) = 5.488
91 FOR KK = 1 TO 19
94 A(KK) = -50 + RND * 100
95 NEXT KK
128 FOR I = 1 TO 100000 STEP 1
129 FOR K = 1 TO 19
131 X(K) = A(K)
132 NEXT K
155 FOR IPP = 1 TO FIX(1 + RND * 3)
181 B = 1 + FIX(RND * 19)
183 R = (1 - RND * 2) * A(B)
187 IF RND < .25 THEN X(B) = A(B) + RND * R ELSE IF RND < .333 THEN X(B) = A(B) + RND ^ 2 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 3 * R ELSE IF RND < .5 THEN X(B) = A(B) + RND ^ 4 * R ELSE X(B) = A(B) + RND ^ 5 * R
191 NEXT IPP
222 X(1) = (17 + X(2) - .0433275) / (2 + (.01 * (X(2) - 17)) / 1.6)
605 FOR J44 = 1 TO 17
608 X(J44 + 2) = (X(J44) - 2 * X(J44 + 1) - .01 * (4 + C(J44)) + (.01 * X(J44 + 1) * (X(J44)) / (1.6))) / (-1 + (.01 * X(J44 + 1)) / 1.6)
611 NEXT J44
615 FOR J46 = 1 TO 19
617 IF X(J46) < 0 THEN 1670
619 NEXT J46
624 PNEW = ABS(-X(18) + 2 * X(19) + .01 * (4 + 6.09725 + X(19) * (14.333333 - X(18)) / (1.6)) - 14.333333)
1111 P = -PNEW
1451 IF P <= M THEN 1670
1657 FOR KEW = 1 TO 19
1658 A(KEW) = X(KEW)
1659 NEXT KEW
1661 M = P
1670 NEXT I
1890 IF M < -.00001 THEN 1999
1912 PRINT A(1), A(2), A(3)
1917 PRINT A(4), A(5), A(6)
1939 PRINT A(7), A(8), A(9)
1940 PRINT A(10), A(11), A(12)
1941 PRINT A(13), A(14), A(15)
1942 PRINT A(16), A(17), A(18), A(19)
1946 PRINT M, JJJJ
1999 NEXT JJJJ
This computer program was run with qb64v1000-win [14]. Copied by hand from the screen, the computer program’s complete output through JJJJ= -31994 is shown below.
16.76053994774042 16.51343842892427 16.25888121933391
15.99737797455906 15.72983919734564 15.4576793405858
15.18292149322616 14.90831519116772 14.63746489615808
14.37496941298835 14.12657364130707 13.89933619678212
13.7018200458575 13.54431900988234 13.43914173080704
13.40098790803036 13.44747177815207 13.59987931435824
13.8842966338043
-2.566166300609421D-07 -31996
16.76053994604014 16.5134384251316 16.25888121298047
15.99737796508836 15.72983918409988 15.45767932279133
15.18292146997742 14.90831516140924 14.63746485866395
14.37496936633824 14.12657358385704 13.89933612662772
13.70181996078543 13.54431890730475 13.43914160767007
13.40098776068398 13.44747160216182 13.59987910422862
13.88429638256556
-1.86485233271208D-08 -31994
Above there is no rounding by hand; it is just straight copying by hand from the screen.
On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and with qb64v1000-win [14], the wall-clock time for obtaining the output through JJJJ= -31994 was ten seconds, not including "Creating .EXE file" time.
Acknowledgment
I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.
References
[1] R. L. Burden, J. D. Faires, Annette M. Burden. Numerical Analysis, Tenth Edition. Cengage Learning, 2016.
[2] Huiping Cao, Global Convergence of Schubert’s Method for Solving Sparse Nonlinear Equations, Abstract and Applied Analysis, Volume 2014, Article ID 251587, 12 pages. Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2014/251587
[3] C. A. Floudas, Deterministic Global Optimization. Kluwer Academic Publishers, 2000.
[4] Rendong Ge, Lijun Liu, Yi Xu, Neural Network Approach for Solving Singular Convex Optimization with Bounded Variables, Open Journal of Applied Sciences, 2013, 3, 285-292. Published Online July 2013. http://www.scirp.org/journal/ojapps
[5] Tianmin Han, Yuhuan Han, Solving Large Scale Nonlinear Equations by a New ODE Numerical Integration Method, Applied Mathematics, 2010, 1, 222-229.
http://www.SciRP.org/journal/am.
[6] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments. Technical Report RT-04-08, July 2004.
http://www.ime.unicamp.br/~martinez/lmrreport.pdf.
[7] William La Cruz, Jose Mario Martinez, Marcos Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Mathematics of Computation, vol. 75, no. 255, pp.1429-1448, 2006.
[8] Microsoft Corp. BASIC, second edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.
[9] Alexander P. Morgan, A Method for Computing All Solutions to Systems of Polynomial Equations, ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 1-17. https://folk.uib.no/ssu029/pdf_file/Morgan83.pdf
[10] NAG, NAG Fortran Library Routine Document, C05PDF/C05PDA.
http://www.nag.com/numeric/FL/manual/pdf/C05/c05pdf.pdf.
[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical recipes: the art of scientific computing, third ed. Cambridge University Press, 2007.
[12] Courtney Remani. Numerical Methods for Solving Systems of Nonlinear Equations. https://www.lakeheadu.ca/sites/default/files/updates/77/docs/RemaniFinal.pdf.
[13] J. Rice. Numerical Methods, Software, and Analysis, Second Edition. Academic Press, 1993.
[14] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.
[15] M. Ziani, F. Guyomarc’h, An Autoadaptive Limited Memory Broyden’s Method To Solve Systems of Nonlinear Equations, Applied Mathematics and Computation 205 (2008) pp. 202-211. web.info.uvt.ro/~cristiana.drogoescu/MC/broyden.pdf.