Jsun Yui Wong
The computer program listed below seeks to solve the following fractional programming problem in Wang and Chu [30, Example 4]:
Maximize ((3 * X(1) + 4 * X(2) + 50) / (4 * X(1) + 3 * X(2) + 2 * X(3) + 50)) + ((3 * X(1) + 5 * X(2) + 3 * X(3) + 50) / (3 * X(1) + 4 * X(2) + 5 * X(3) + 50)) + ((4 * X(1) + 2 * X(2) + 4 * X(3) + 50) / (5 * X(1) + 4 * X(2) + 3 * X(3) + 50))
subject to
6 * X(1) + 3 * X(2) + 3 * X(3)<=10,
10 * X(1)+ 3 * X(2) + 8 * X(3)<=10,
X(1) >= 0, X(2)> =0, X(3) >= 0.
X(4) and X(5) below are slack variables.
0 DEFDBL A-Z
2 DEFINT K
3 DIM B(99), N(99), A(99), H(99), L(99), U(99), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO -31999 STEP .01
14 RANDOMIZE JJJJ
16 M = -1D+37
70 FOR J44 = 1 TO 3
72 A(J44) = RND * 1000
73 NEXT J44
128 FOR I = 1 TO 100
129 FOR KKQQ = 1 TO 3
130 X(KKQQ) = A(KKQQ)
131 NEXT KKQQ
133 FOR IPP = 1 TO (1 + FIX(RND * 2))
181 J = 1 + FIX(RND * 3)
183 r = (1 - RND * 2) * A(J)
187 X(J) = A(J) + (RND ^ (RND * 10)) * r
191 NEXT IPP
196 FOR J99 = 1 TO 3
199 REM X(J99) = INT(X(J99))
201 IF X(J99) < 0 THEN 1670
203 REM IF X(J99) > 10 THEN 1670
204 NEXT J99
308 X(4) = 10 - 6 * X(1) - 3 * X(2) - 3 * X(3)
309 X(5) = 10 - 10 * X(1) - 3 * X(2) - 8 * X(3)
325 FOR J99 = 4 TO 5
327 XX(J99) = X(J99)
330 IF X(J99) < 0 THEN X(J99) = X(J99) ELSE X(J99) = 0
331 NEXT J99
359 POBA = ((3 * X(1) + 4 * X(2) + 50) / (4 * X(1) + 3 * X(2) + 2 * X(3) + 50)) + ((3 * X(1) + 5 * X(2) + 3 * X(3) + 50) / (3 * X(1) + 4 * X(2) + 5 * X(3) + 50)) + ((4 * X(1) + 2 * X(2) + 4 * X(3) + 50) / (5 * X(1) + 4 * X(2) + 3 * X(3) + 50)) + 1000000 * (X(4) + X(5))
466 P = POBA
1111 IF P <= M THEN 1670
1452 M = P
1454 FOR KLX = 1 TO 5
1456 XXX(KLX) = XX(KLX)
1459 A(KLX) = X(KLX)
1460 NEXT KLX
1557 GOTO 128
1670 NEXT I
1889 IF M < -1000 THEN 1999
1900 PRINT A(1), A(2), A(3), A(4), A(5)
1903 PRINT XXX(4), XXX(5)
1912 PRINT M, JJJJ
1999 NEXT JJJJ
This BASIC computer program was run with qb64v1000-win [31]. The complete output through JJJJ = -31999.99 is shown below:
5.599804986187998D-15 3.333332349810712 3.742777017698164D-15
0 0
2.950567817945802D-06 2.950567776139278D-06
3.002923975208128 -32000
1.01350324964244D-14 3.333330847652206 3.39851779191871D-15
0 0
7.457043310417812D-06 7.457043252569016D-06
3.002923973069783 -3999.99
Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and qb64v1000-win [31], the wall-clock time for obtaining the output through JJJJ= -31999.99 was 2 seconds, not including the time for "Creating the .EXE file." One can compare the computational results above to the results in TABLE II of Wang and Chu [30, Example 4].
Acknowledgment
I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.
References
[1] Yuichiro Anzai (1974). On Integer Fractional Programming. Journal of the Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66. http://www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.
[2] Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.
[3] S. S. Chadha (2002). Fractional programming with absolute-value functions. European Journal of Operational Research 141 (2002) pp. 233-238.
[4] Ching-Ter Chang (2002). On the posynomial fractional programming problems. European Journal of Operational Research 143 (2002) pp. 42-52.
[5] Ching-Ter Chang (2006). Formulating the mixed integer fractional posynomial programming, European Journal of Operational Research 173 (2006) pp. 370-386.
[6] Piya Chootinan, Anthony Chen (2006). Constraint Handling in genetic algorithms using a gradient-based repair method. Computers and Operations Research 33 (2006) 2263-2281.
[7] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011). Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.
[8] Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013). Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Sinulation 18 (2013) 89-98.
[9] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:17-35.
[10] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Erratum to: Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:245.
[11] Chrysanthos E. Gounaris, Christodoulos A. Floudas. Tight convex underestimators for Csquare-continuous problems: II. multivariate functions. Journal of Global Optimization (2008) 42, pp. 69-89.
[12] Han-Lin Li, Jung-Fa Tsai, Christodoulos A. Floudas (2008). Convex underestimating for posynomial functions of postive variables. Optimization Letters 2, 333-340 (2008).
[13] Han-Lin Li, Jung-Fa Tsai (2008). A distributed computational algorithm for solving portfolio problems with integer variables. European Journal of Operational Research 186 (2008) pp. 882-891.
[14] Ming-Hua Lin, Jung-Fa Tsai (2014). A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization (2014) 46:7, pp. 863-879.
[15] Hao-Chun Lu, Han-Lin Li, Chrysanthos E. Gounaris, Christodoulos A. Floudas (2010). Convex relaxation for solving posynomial problems. Journal of Global Optimization (2010) 46, pp. 147-154.
[16] Hao-Chun Lu (2012). An efficient convexification method for solving generalized geometric problems. Journal of Industrial and Management Optimization, Volume 8, Number 2, May 2012, pp. 429-455.
[17] Hao-Chun Lu (2017). Improved logarithnic linearizing method for optimization problems with free-sign pure discrete signomial terms. Journal of Global Optimization (2017) 68, pp. 95-123.
[18] Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm – MATLAB & Simulink Example.
https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/
[19] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.
[20] Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016. http://www.springer.com/cda/content/document/cda…/
[21] Gideon Oron (1979) An algorithm for optimizing nonlinear contrained zero-one problems to improve wastewater treatment, Engineering Optimization, 4:2, 109-114.
[22] H. S. Ryoo, N. V. Sahinidis (1995). Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.
[23] C. R. Seshan, V. G. Tikekar (1980) Algorithms for Fractional Programming. Journal of the Indian Institute of Science 62 (B), Feb. 1980, Pp. 9-16.
[24] Pei-Ping Shen, Yun-Peng Duan, Yong-Gang Pei. A simplicial branch and duality boundalgorithm for the sum of convex-convex ratios problem. Journal of Computational and Applied Mathematics 223 (2009) 145-158.
[25] P. B. Thanedar, G. N. Vanderplaats (1995). Survey of discrete variable optimization for structural design, Journal of Structural Engineering, 121 (2), 301-306 (1995).
[26] Jung-Fa Tsai (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization (2005) 37:4, pp. 399-409.
[27] Jung-Fa Tsai, Ming-Hua Lin (2007). Finding all solutions of systems of nonlinear equations with free variables. Engineering Optimization (2007) 39:6, pp. 649-659
[28] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007). On generalized geometric programming problems with non-positive variables. European Journal of Operational Research 178 (2007) pp. 10-19.
[29] Jung-Fa Tsai, Ming-Hua Lin (2008). Global optimization of signomial mixed-integer nonlinear programming with free variables. Journal of Global Optimization (2008) 42 pp. 39-49.
[30] Chun-Feng Wang, Xin-Yue Chu (2017). A new branch and bound method for solving sum of linear ratios problem. IAENG International Journal of Applied Mathematics 47:3, IJAM_47_3_06.
[31] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.
[32] Jsun Yui Wong (2012, April 12). The Domino Method of General Integer Nonlinear Programming Applied to a Nonlinear Fractional Programming Problem from the Literature. http://myblogsubstance.typepad.com/substance/2012/04/12/
[33] Helen Wu (2015). Geometric Programming. https://optimization.mccormick.northwstern.edu/index.php/Geometric_Programming.
[34] Xin-She Yang, Christian Huyck, Mehmet Karamanoglu, Nawaz Khan (2014). True global optimality of the pressure vessel design problem: A benchmark for bio-inspired optimisation algorithms. https://arxiv.org/pdf/1403.7793.pdf.
[35] Xin-She Yang, Amir Hossein Gandomi (2012). Bat algorithm: a novel approach for global engineering optimization. Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 20,No. 5, 2012, pp. 461-483.
[36] B. D. Youn, K. K. Choi (2004). A new response surface methodology for reliability-based design optimization. Computers and Structures 82 (2004) 241-256.
Comments
You can follow this conversation by subscribing to the comment feed for this post.