Jsun Yui Wong
The computer program listed below seeks to solve the following problem in Li and Tsai [25, p. 12, Example 4]:
Minimize (X(4) - 1) ^ 2 + (X(5) - 2) ^ 2 + (X(6) - 1) ^ 2 - LOG(X(7) + 1) + (X(1) - 1) ^ 2 + (X(2) - 2) ^ 2 + (X(3) - 3) ^ 2
subject to
X(4) + X(5) + X(6) + X(1) + X(2) + X(3)<=5
X(6) ^ 2 + X(1) ^ 2 + X(2) ^ 2 + X(3) ^ 2<=5.5
X(4) + X(1)<=1.2
X(5) + X(2)<=1.8
X(6) + X(3)<=2.5
X(7) + X(1)<=1.2
X(5) ^ 2 + X(2) ^ 2<=1.64
X(6) ^ 2 + X(3) ^ 2<=4.25
X(5) ^ 2 + X(3) ^ 2<=4.64
0<=X(1) <=1.2
0<=X(2) <=1.8
0<=X(3) <=2.5
X(4) through X(7) are binary integer variables.
X(8) through X(16) below are slack variables added.
For the purpose of getting some domino effect, the computer program here tries to find an optimal value for X(10) of line 321, which is 321 X(10) = 1.2 - X(4) - X(1), earlier than the computer program of the first edtion. When one compares X(10) to X(8), to find an optimal X(10) is relatively easy because only optimal X(1) and optimal X(4) are needed.
0 DEFDBL A-Z
2 DEFINT K
3 DIM B(99), N(99), A(99), H(99), L(99), U(99), X(1111), D(111), P(111), PS(33)
12 FOR JJJJ = -32000 TO -31999.96 STEP .01
14 RANDOMIZE JJJJ
16 M = -1D+37
77 A(1) = RND * 1.2
78 A(2) = RND * 1.8
79 A(3) = RND * 2.5
111 A(4) = FIX(RND * 2)
112 A(5) = FIX(RND * 2)
113 A(6) = FIX(RND * 2)
114 A(7) = FIX(RND * 2)
128 FOR I = 1 TO 1500
129 FOR KKQQ = 1 TO 7
130 X(KKQQ) = A(KKQQ)
131 NEXT KKQQ
133 FOR IPP = 1 TO (1 + FIX(RND * 3))
181 j = 1 + FIX(RND * 7)
183 IF j < 4 THEN GOTO 184 ELSE GOTO 197
184 r = (1 - RND * 2) * A(j)
185 X(j) = A(j) + (RND ^ (RND * 10)) * r
191 GOTO 222
197 IF A(j) = 0 THEN X(j) = 1 ELSE X(j) = 0
222 NEXT IPP
268 IF X(1) < 0## THEN 1670
269 IF X(1) > 1.2## THEN 1670
278 IF X(2) < 0## THEN 1670
289 IF X(2) > 1.8## THEN 1670
291 IF X(3) < 0## THEN 1670
293 IF X(3) > 2.5## THEN 1670
311 REM X(8) = 5 - X(4) - X(5) - X(6) - X(1) - X(2) - X(3)
313 REM X(9) = 5.5 - X(6) ^ 2 - X(1) ^ 2 - X(2) ^ 2 - X(3) ^ 2
321 X(10) = 1.2 - X(4) - X(1)
322 X(13) = 1.2 - X(7) - X(1)
323 X(11) = 1.8 - X(5) - X(2)
325 X(12) = 2.5 - X(6) - X(3)
327 REM X(13) = 1.2 - X(7) - X(1)
329 X(14) = 1.64 - X(5) ^ 2 - X(2) ^ 2
331 X(15) = 4.25 - X(6) ^ 2 - X(3) ^ 2
333 X(16) = 4.64 - X(5) ^ 2 - X(3) ^ 2
353 X(9) = 5.5 - X(6) ^ 2 - X(1) ^ 2 - X(2) ^ 2 - X(3) ^ 2
355 X(8) = 5 - X(4) - X(5) - X(6) - X(1) - X(2) - X(3)
401 FOR J47 = 8 TO 16
404 IF X(J47) < 0 THEN X(J47) = X(J47) ELSE X(J47) = 0
409 NEXT J47
443 POBA = -(X(4) - 1) ^ 2 - (X(5) - 2) ^ 2 - (X(6) - 1) ^ 2 + LOG(X(7) + 1) - (X(1) - 1) ^ 2 - (X(2) - 2) ^ 2 - (X(3) - 3) ^ 2 + 1000000 * (X(8) + X(9) + X(10) + X(11) + X(12) + X(13) + X(14) + X(15) + X(16))
466 P = POBA
1111 IF P <= M THEN 1670
1450 M = P
1454 FOR KLX = 1 TO 16
1455 A(KLX) = X(KLX)
1456 NEXT KLX
1557 GOTO 128
1670 NEXT I
1889 IF M < -5 THEN 1999
1907 PRINT A(1), A(2), A(3)
1908 PRINT A(4), A(5), A(6), A(7), A(8)
1909 PRINT A(9), A(10), A(11), A(12)
1910 PRINT A(13), A(14), A(15), A(16), M, JJJJ
1999 NEXT JJJJ
This BASIC computer program was run with QB64v1000-win [51]. The complete output through JJJJ = -31999.9600000001 is shown below:
.1999999999978652 .7999999999534856 1.907878401288323
1 1 0 1 0
0 0 0 0
0 0 0 0 -4.579582405927654
-32000
.1999999999661386 .7999999978912403 1.907878399774086
1 1 0 1 0
0 0 0 0
0 0 0 0 -4.579582414235267
-31999.99
.199999999924534 .799999999914449 1.907878401599777
1 1 0 1 0
0 0 0 0
0 0 0 0 -4.579582405458381
-31999.98
.1999999992970735 .7999999996643608 1.907878402594483
1 1 0 1 0
0 0 0 0
0 0 0 0 -4.57958240488985
-31999.97000000001
.1999999998539791 .7999999999443966 1.907878395902781
1 1 0 1 0
0 0 0 0
0 0 0 0 -4.57958241794302
-31999.96000000001
Above there is no rounding by hand; it is just straight copying by hand from the monitor screen. On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and QB64v1000-win [51], the wall-clock time (not CPU time) for obtaining the output through
JJJJ =-31999.96000000001 was 2 or 3 seconds, not including the time for “Creating .EXE file” (10 seconds, total, including the time for “Creating .EXE file”). One can compare the computational results above with those in Table 2 of Li and Tsai [25, p. 12].
Acknowledgment
I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.
References
[1] Yuichiro Anzai (1974). On Integer Fractional Programming. Journal of the Operations Research Society of Japan, Volume 17, No. 1, March 1974, pp. 49-66. http://www..orsj.or.jp/~archiv/pdf/e_mag/Vol.17_01_049.pdf.
[2] Sjirk Boon. Solving systems of nonlinear equations. Sci. Math. Num-Analysis,1992, Newsgroup Article 3529.
[3] S. S. Chadha (2002). Fractional programming with absolute-value functions. European Journal of Operational Research 141 (2002) pp. 233-238.
[4] Ching-Ter Chang (2002). On the posynomial fractional programming problems. European Journal of Operational Research 143 (2002) pp. 42-52.
[5] Ching-Ter Chang (2006). Formulating the mixed integer fractional posynomial programming, European Journal of Operational Research 173 (2006) pp. 370-386.
[6] Ching-Ter Chang (2017). Fuzzy linearization strategy for multiple objective linear fractional programming with binary utility functions. Computers and Industrial Engineering 112 (2017) 437-446.
[7] Piya Chootinan, Anthony Chen (2006). Constraint Handling in genetic algorithms using a gradient-based repair method. Computers and Operations Research 33 (2006) 2263-2281.
[8] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2011). Mixed variable structural optimization using Firefly Algorithm, Computers and Structures 89 (2011) 2325-2336.
[9] Amir Hossein Gandomi, Xin-She Yang, Siamak Taratahari, Amir Hossein Alavi (2013). Firefly Algorithm with Chaos, Communications in Nonlinear Science and Numerical Simulation 18 (2013) 89-98.
[10] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:17-35.
[11] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi (2013). Erratum to: Cuckoo search algorithm: a metaheuristicapproach to solve structural optimization problem. Engineering with Computers (2013) 29:245.
[12] Chrysanthos E. Gounaris, Christodoulos A. Floudas. Tight convex underestimators for Csquare-continuous problems: II. multivariate functions. Journal of Global Optimization (2008) 42, pp. 69-89.
[13] E. L. Hannan (1981), Linear programming with multiple fuzzy goals, Fuzzy Sets and Systems 6 (1981) 235-246.
[14] Xue-Ping Hou, Pei-Ping Shen, Chun-Feng Wang (2014). Global Minimization for Generalized Polynomial Fractional Program. Mathmatical Problems in Engineering, Volume 2014. Hindawi Publishing Company.
[15] James P. Ignizio, Linear Programming in Single- and Multiple-Objective Systems. Prentice-Hall, Englewood Cliffs, NJ, 1982.
[16] James P. Ignizio, Stephen C. Daniels (1983). Fuzzy multicriteria integer programming via fuzzy generalized networks. Fuzzy Sets and Systems 10 (1983) 261-270.
[17] James P. Ignizio, Tom M. Cavalier, Linear Programming. Prentice-Hall, Englewood Cliffs, NJ, 1994.
[18] Majid Jaberipour, Esmaile Khorram (2010). Solving the sum of ratios problems by a harmony search algorithm. Journal of Computational and Applied Mathematics 234 (2010) 733-742.
[19] Sanjay Jain, Kailash Lachhwani (2010). Linear plus fractional multiobjective programming problem with homogeneous constraints using fuzzy approach. Iranian Journal of Operations Research, Vol. 2, No. 1, 2010, pp. 41-49.
[20] Hongwei Jiao, Zhankui Wang, Yongqiang Chen (2013). Global Optimization Algorithm for Sum of Generalized Polynomial Ratios Problems. Applied Mathematical Modelling 37 (2013) 187-197.
[21] Ali Husseinzadeh Kashan (2011). An effective algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA). Computer-Aided Design 43 (2011) 1769-1792.
[22] Ali Husseinzadeh Kashan (2015). An effective algorithm for constrained optimization based on optics inspired optimization (OIO). Computer-Aided Design 63 (2015) 52-71.
[23] K. Lachhwani (2012). Fuzzy Goal Programming Approach to Multi Objectve Quadratic Programming Problem. Proceedings of the National Academy of Sciences, India, Section A Physical Sciences (October-December 2012) 82 (4): 317-322.
https://link.springer.com/journal/40010
[24] K. Lachhwani (2014). FGP approach to multi objectve quadratic fractional programming problem. International Journal of Industrial Mathematics, vol. 6, No.1, pp. 49-57. Available online at http://ijim.srbiau.ac.ir/
[25] Han-Lin Li, Jung-Fa Tsai (2005). Treating free variables in generalized geometric global optimization programs. Journal of Global Optimization, 33: 1-13 (2005).
[26] Han-Lin Li, Jung-Fa Tsai, Christodoulos A. Floudas (2008). Convex underestimating for posynomial functions of postive variables. Optimization Letters 2, 333-340 (2008).
[27] Han-Lin Li, Jung-Fa Tsai (2008). A distributed computational algorithm for solving portfolio problems with integer variables. European Journal of Operational Research 186 (2008) pp. 882-891.
[28] Han-Lin Li, Hao-Chun Lu (2009). Global optimization for generalized geometric progams with mixed free-sign variables. Operations Research 57 (3): 701-713 (2009).
[29] Han-Lin Li, Shu-Cherng Fang, Yao-Huei Huang, Tiantian Nie (2016). An enhanced logarithmic method for signomial programming with discrete variables. European Journal of Operational Research 255 (2016) pp. 922-934.
[30] Ming-Hua Lin, Jung-Fa Tsai (2011). Finding multiple optimal solutions of signomial discrete programming problems with free variables, Optimization and Engineering (2011) 12:425-443.
[31] Ming-Hua Lin, Jung-Fa Tsai (2014). A deterministic global approach for mixed-discrete structural optimization, Engineering Optimization (2014) 46:7, pp. 863-879.
[32] Hao-Chun Lu, Han-Lin Li, Chrysanthos E. Gounaris, Christodoulos A. Floudas (2010). Convex relaxation for solving posynomial problems. Journal of Global Optimization (2010) 46, pp. 147-154.
[33] Hao-Chun Lu (2012). An efficient convexification method for solving generalized geometric problems. Journal of Industrial and Management Optimization, Volume 8, Number 2, May 2012, pp. 429-455.
[34] Hao-Chun Lu (2017). Improved logarithnic linearizing method for optimization problems with free-sign pure discrete signomial terms. Journal of Global Optimization (2017) 68, pp. 95-123.
[35] Kenneth R. MacCrimmon (1973). An overview of multiple objective decision making. In James L. Cochrane, Milan Zeleny (editors), Multiple Criteria Decisiom Making. University of South Carolina Press, Columbia.
[36] Mathworks. Solving a mixed integer engineering design problem using the genetic algorithm – MATLAB & Simulink Example.
https://www.mathworks.com/help/gads/examples/solving-a-mixed-integer-engineering-design-problem-using-the-genetic-algorithm.html/
[37] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.
[38] Katta Murty, Operations Research: Deterministic Optimization Models. Prentice-Hall, 1995.
[39] Sinan Melih Nigdeli, Gebrail Bekdas, Xin-She Yang (2016). Application of the Flower Pollination Algoritm in Structural Engineering. Springer International Publishing Switzerland 2016. http://www.springer.com/cda/content/document/cda…/
[40] Gideon Oron (1979) An algorithm for optimizing nonlinear contrained zero-one problems to improve wastewater treatment, Engineering Optimization, 4:2, 109-114.
[41] Osama Abdel Raouf, Ibraham M. Hezam (2014). Solving Fractional Programming Problems Based on Swarm Intelligence. Journal of Industrial Engineering International (2014) 10:56.
[42] H. S. Ryoo, N. V. Sahinidis (1995). Global optimization of nonconvex NLP and MINLP with applications in process design. Computers and Chemical Engineering Vol. 19 (5) (1995) pp. 551-566.
[43] C. R. Seshan, V. G. Tikekar (1980) Algorithms for Fractional Programming. Journal of the Indian Institute of Science 62 (B), Feb. 1980, Pp. 9-16.
[44] Vikas Sharma (2012), Multobjective integer nonlinear fractional programming problem: A cutting plane approach. OPSEARCH of the Operational Research Society of India (April-June 2012) 49 (2) 133-153.
[45] Pei-Ping Shen, Yun-Peng Duan, Yong-Gang Pei. A simplicial branch and duality boundalgorithm for the sum of convex-convex ratios problem. Journal of Computational and Applied Mathematics 223 (2009) 145-158.
[46] P. B. Thanedar, G. N. Vanderplaats (1995). Survey of discrete variable optimization for structural design, Journal of Structural Engineering, 121 (2), 301-306 (1995).
[47] Jung-Fa Tsai (2005). Global optimization of nonlinear fractional programming problems in engineering design. Engineering Optimization (2005) 37:4, pp. 399-409.
[48] Jung-Fa Tsai, Ming-Hua Lin (2007). Finding all solutions of systems of nonlinear equations with free variables. Engineering Optimization (2007) 39:6, pp. 649-659
[49] Jung-Fa Tsai, Ming-Hua Lin, Yi-Chung Hu (2007). On generalized geometric programming problems with non-positive variables. European Journal of Operational Research 178 (2007) pp. 10-19.
[50] Jung-Fa Tsai, Ming-Hua Lin (2008). Global optimization of signomial mixed-integer nonlinear programming with free variables. Journal of Global Optimization (2008) 42 pp. 39-49.
[51] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.
[52] Taeyong Yang, James P. Ignizio, and Hyun-Joon Kim, Fuzzy programming with nonlinear membership functions: Piecewise linear approximation. Fuzzy Sets and Systems 41 (1991) 39-53.
[53] H.-J. Zimmermann (1978), Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems 1 (1978) 45-55.